私は深層学習をテーマにニューラルネットワークとは何か、どのようにして動いているのか等を学んでいました。学習や推論の原理、勾配降下法とは実際に何をしているのかを数式ベースで学んでいき、研究で使うための深層学習の知識を蓄えることができました。最終発表では、実際の論文をベースに物体の検知を行うモデルの作成、発表を行いました。物体の検知は下図のように物体の分類だけでなく、物体のある場所までも特定しなければならない比較的難易度の高いタスクです。それでも教科書で学んだ内容を踏まえて、論文の輪読も再現実装も経験できた非常に良い機会でした。
私は卒研1では深層学習の教科書を読み進め、次に論文を読む練習を行い、最後に4つの最適化手法SGD、AdaGrad、RMSProp、Adamの挙動を比較する実験を行いました。機械学習では予測値と正解値の誤差を表す損失関数を指標にパラメータを調整します。そのため損失関数の最小化を目標とするのですが、その一つの要素として適当な最適化手法の選択があります。また、プレゼンテーションを行う機会が多い為、発表のスキルも上げることができると思います。
研究室で3つのグループに分かれて取り組みました。私は最適化グループに所属し、教科書を使って「組合せ最適化」と「数理最適化」について学びました。最終的にはその中で興味を持った技術に対して実験を行いました。私はメタヒューリスティックに興味を持ち、その中でもAnt Colony Optimization(ACO)について取り組みました。アリの行動原理を模倣したメタヒューリスティックです。アリがフェロモンと呼ばれる情報を残しながら餌場を探索し、最短経路を見つけることを基本原理としています。ACOを使い、巡回セールスマン問題という与えられた複数の都市を1つの巡回路で訪れる最短経路を見つける問題を解きました。興味を持ったことについて積極的に取り組むことで成長できると思います。
目的地までの距離が最短になるルートはどれなのか?こういった日常的に起こりうる問題を解決する手段の一つが最適化手法です。しかし、目的地までのルートを考える時、距離だけでなく所要時間・料金などの複数の要素について考えたい時があります。多くの場合、全ての要素を最良の値にすることはできません。短時間だけど高価なルートが良いのかその逆が良いのか、人間がそれぞれの要素をどの程度重視するかで答えが変わっていきます。その時に利用できるのが多目的最適化です。私はその中でも多目的遺伝的アルゴリズムの一種であるNSGA-IIについて取り組みました。NSGA-IIには正確な最適解を素早く得るための様々な工夫がされており、複雑な構造をしていましたが、先生からのアドバイスやゼミの仲間と協力することで理解を十分に深めることができました。
学習グループ、最適化グループ、群グループの3グループに分かれてそれぞれの分野の教科書を読み進めます。ただし、卒研2からの研究内容について、卒研1で決まったそれぞれ大きく3つのテーマを貫く必要はなく、春休みの面談で研究内容について相談すればどれでもできます。ゼミでは1回にそれぞれのグループの一人がそれまでに勉強したことを発表します。また、14、15回目には卒研1の集大成として今まで勉強したことを使って実験を行い、それを発表、レポート報告します。僕が担当していた群グループでは、「マルチエージェントシステムとは」、「強化学習」、「ゲーム理論」をキーワードに勉強しました。その後の卒研2でも使う知識なので教科書は読めるようになった方がいいと思います。
私は卒研1では強化学習(群知能)のテーマを選択し, ゲーム理論を中心的に学んでいました. 具体的には囚人のジレンマと呼ばれるような, 囚人二人が自分の利益のみを追求すると双方ともが最良の結果を逃すような環境を主に扱っていました. その環境にて, とある囚人が可能な限り大きな利益を得るための戦略を考えることを卒研1での柱としていました.知識ゼロの状態からのスタートでしたが, 主体的に学ぶことで新しい発見がいくつも得られました. 同回生同士で高め合う形式の勉強は非常に刺激的で, 成長を実感できる有意義な半年間が過ごせたと思います.
・自分の興味ある分野や研究について挑戦できる場所だと思います。毎週あるゼミでは先輩方の研究への取り組みや活発な議論を聞いて刺激を受けています。また、発表の方法や研究への取り組み方などわからないことがあれば、先生や先輩方が丁寧に教えてくれます。
・私たち学生は主体的に取り組む事を強く求められ、先生方はそのサポートを惜しみなくしてくださいます。
・この研究室では、機械学習、最適化、群(強化学習)の3つの分野を選択でき、また、それぞれの分野で面倒を見てくださる先生方や先輩方のサポートがとても手厚いと感じています。研究室に配属されてから、プレゼンテーションの仕方から理論の理解、ロジカルな考え方などいろいろなものを吸収させてもらえていると思っています。
・AIの技術の進化のスピードが著しい中、新しいモデルや論文のキャッチアップを教授、先輩と一緒に丁寧に行うことができる研究室です!分からない概念や専門用語も質問することでこちらが納得するまで説明してくださるので、しっかりとした知識を蓄えることができます!
・自分の興味を持った分野や、先輩の研究の引継ぎなど幅広い分野を学べるのがこの研究室の魅力だと思います
・学生が興味を持ったテーマで研究を進めることができます。自主的に行動することが推奨されており、先生方は手厚くサポートしてくださいます。 br>
・研究室に興味がある皆様へ
学生が主体的に行動でき、教授や助教の方々も惜しみなく議論やサポートをしてくださいます。そのおかげで、私はM1の秋に国際学会で発表をし、海外の研究者と英語で議論を交わす貴重な経験をすることができました。積極的に行動することで、研究者として一回り成長できる素晴らしい研究室です!AIや深層生成モデル、拡散モデルに興味のある方はぜひ連絡下さい!
・色々なことに挑戦できる研究室だと思います.私は学部4年で企業からの委託課題に取り組みました.先輩と2人でこの課題に取り組み,企業との打ち合わせに参加したりもしました.修士からは自分で研究テーマを設定して,研究に取り組んでいます.
・ AI, 最適化, 群れのどれかに興味があって、”ほどよい距離感”が好きな人にオススメの研究室です。