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Abstract

In this paper, a new genetic algorithm for
multi-objective optimization problems is in-
troduced. That is called ”Neighborhood Cul-
tivation GA (NCGA)”. In the recent stud-
ies such as SPEA2 or NSGA-II, it is demon-
strated that some mechanisms are impor-
tant; the mechanisms of placement in an
archive of the excellent solutions, sharing
without parameters, assign of fitness, selec-
tion and reflection the archived solutions to
the search population. NCGA includes not
only these mechanisms but also the neighbor-
hood crossover. The comparison of NCGA
with SPEA2 and NSGA-II by some test func-
tions shows that NCGA is a robust algorithm
to find Pareto-optimum solutions. Through
the comparison between the case of using
neighborhood crossover and the case of us-
ing normal crossover in NCGA, the effect of
neighborhood crossover is made clear.

1 Introduction

Recently, the study of evolutionary computation of
multi-objective optimization has been researched ac-
tively and made great progress [1, 2, 3, 4, 5]. The
many approaches have been introduced and genetic
algorithm (GA) is a main approach among them [1].
GA is one of simulations that imitate the heredity
and evolution of creatures [6]. One of the goals of
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multi-objective optimization problems may be to ob-
tain a set of Pareto-optimum solution [1]. Since the
Pareto-optimum solution is a set, many trials should
be needed for a single point search. On the other hand,
the set can be derived in one trial with GAs, since
GA is one of multi point search methods. That is
the reason why GAs are focused in the field of multi-
objective optimization problems. To apply GAs to
multi-objective optimization problems, genetic oper-
ators and fitness function that keep the diversity of
the solutions during the search should be prepared.

In this few years, several new algorithms that can
find good Pareto-optimum solutions with small calcu-
lation cost are developped [1]. Those are NSGA-II [2],
SPEA2 [3], NPGA-II [5] and MOGA [7]. These new
algorithms have the same search mechanisms; those
are preservation scheme of excellent solutions that are
found in the search, allocation scheme of appropriate
fitness values and sharing scheme without parameters.

We proposed the parallel model of multi-objective GA
that is called DRMOGA [4]. In this model, we dis-
cussed the difference of the parallel models between
single objective problems and multi-objective prob-
lems. We also proposed a neighborhood crossover and
showed the effectiveness of the neighborhood crossover
thorough the numerical examples.

In this paper, we propose a new GA for multi-objective
optimization problems. That is called Neighborhood
Cultivation GA (NCGA). NCGA not only includes the
mechanisms of NSGA-II and SPEA2 that derive the
good solutions but also the mechanism of neighbor-
hood crossover. Through the numerical experiments,
the effectiveness of NCGA is discussed. In the experi-
ments, the results of NCGA are compared with those
of NSGA-II, SPEA2 and non-NCGA (nNCGA).



2 Multi-Objective Optimization
Problems by Genetic Algorithms

In multi-objective optimization problems, there are
several objectives. Usually these objectives cannot
minimize or maximize at the same time since there
is a trade-off relation ship between the objectives [1].
Therefore, one of the goals of multi-objective optimiza-
tion problem is to find a set of Pareto-optimum solu-
tions.

Genetic Algorithm is an algorithm that simulates crea-
tures’ heredity and evolution [6]. Since GA is one of
multi point search methods, an optimum solution can
be determined even when the landscape of the objec-
tive function is multi modal. Moreover, GA can be
applied to problems whose search space is discrete.
Therefore, GA is one of very powerful optimization
tools and is very easy to use. In multi-objective opti-
mization, GA can find a Pareto-optimum set with one
trial because GA is a multi point search. As a result,
GA is a very effective tool especially in multi-objective
optimization problems. Thus, there are many re-
searchers who are working on multi-objective GA and
there are many algorithms of multi-objective GA.
These algorithms of multi-objective GA are roughly
divided into two categories; those are the algorithms
that treat Pareto-optimum solution implicitly or ex-
plicitly [1]. The most of the latest methods treat
Pareto-optimum solution explicitly.

The following topics are the mechanisms that the re-
cent GA approaches have.

1) Reservation mechanism of the excellent solutions
2) Reflection to search solutions mechanism of the

reserved excellent solutions
3) Cut down (sharing) method of the reserved excel-

lent solutions
4) Assignment method of fitness function
5) Unification mechanism of values of each objective

These mechanisms derive the good Pareto-optimum
solutions. Therefore, the developed algorithm should
have these mechanisms.

3 Neighborhood Cultivation Genetic
Algorithm

3.1 Overall flow of Neighborhood Cultivation
Genetic Algorithm

In this paper, we extend GA and develop a new al-
gorithm that is called Neighborhood Cultivation Ge-
netic Algorithm (NCGA). NCGA has a neighborhood

crossover mechanism in addition to the mechanisms of
GAs that are explained in the former chapter. In GAs,
the exploration and exploitation are very important.
By exploitation, an optimum solution can be found in
a global area. By exploration, an optimum solution
can be found around the elite solution. In a single ob-
ject GAs, exploration is performed in the early stage
of the search and exploitation is performed in the lat-
ter stage. On the other hand, in multi-objective GAs,
both exploration and exploitation should be performed
during the search. Usually, crossover operation helps
both exploration and exploitation.

In NCGA, the exploitation factor of the crossover is re-
inforced. In the crossover operation of NCGA, a pair of
the individuals for crossover is not chosen randomly,
but individuals who are close each other are chosen.
Because of this operation, child individuals which are
generated after the crossover may be close to the par-
ent individuals. Therefore, the precise exploitation is
expected.

The following steps are the overall flow of NCGA
where

Pt : search population at generation t
At : archive at generation t.

Step 1: Initialization: Generate an initial population
P0. Population size is N . Set t = 0. Calculate
fitness values of initial individuals in P0. Copy
P0 into A0. Archive size is also N .

Step 2: Start new generation: set t = t + 1.

Step 3: Generate new search population: Pt = At−1.

Step 4: Sorting: Individuals of Pt are sorted with
along to the values of focused objective. The
focused objective is changed at every genera-
tion. For example, when there are three objec-
tives, the first objective is focused in this step
in the first generation. The third objective is
focused in the third generation. Then the first
objective is focused again in the fourth gener-
ation.

Step 5: Grouping: Pt is divided into groups which
consists of two individuals. These two indi-
viduals are chosen from the top to the down
of the sorted individuals.

Step 6: Crossover and Mutation: In a group, crossover
and mutation operations are performed. From
two parent individuals, two child individuals
are generated. Here, parent individuals are
eliminated.



Step 7: Evaluation: All of the objectives of individuals
are derived.

Step 8: Assembling: The all individuals are assembled
into one group and this becomes new Pt.

Step 9: Renewing archives: Assemble Pt and At−1 to-
gether. Then N individuals are chosen from
2N individuals. To reduce the number of in-
dividuals, the same operation of SPEA2 (En-
vironment Selection) is also performed.

Step 10: Termination: Check the terminal condition.
If it is satisfied, the simulation is terminated.
If it is not satisfied, the simulation returns to
Step 2.

In NCGA, most of the genetic operations are per-
formed in a group that is consisted of two individuals.
That is why this algorithm is called ”local cultivate”.
This scheme is similar to Minimum Generation Gap
model (MGG) [8]. However, the concept of generation
of NCGA is the same as simple GAs.

4 Numerical Examples

In this section, NCGA is applied to the some test
functions. The results are compared with those of
SPEA2 [3], NSGA-II [1] and non-NCGA (nNCGA).
nNCGA is the same algorithm of NCGA except neigh-
borhood crossover.

4.1 Test Functions

In this paper, we use two continuous functions and a
knapsack problem. These problems are explained as
follows. In these equations, f denotes an objective
function and g(g ≥ 0) indicates a constraint.

ZDT4 :
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���

min f1(x) = x1

min f2(x) = g(x)[1 −
�

x1
g(x)

]

g(x) = 91 +
�10

i=2[x
2
i − 10 cos(4πxi)]

x1 ∈ [0, 1], xi ∈ [−5, 5], i = 2, . . . , 10

KUR :
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min f1 =
�n

i=1(−10 exp(−0.2
�

x2
i + x2

i+1))

min f2 =
�n

i=1(|xi|0.8 + 5 sin(xi)
3)

xi[−5, 5], i = 1, . . . , n, n = 100

KP750 − 2 :
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min fi(x) =
�n

i=1 xi · pi,j

s.t.
g(x) =

�n
i=1 xiẇi,j ≤ Wj

pi,j(profit value)
wi,j(weight value)
1 ≤ j ≤ 2

ZDT4 was use by Zitzler and Deb [9]. There are 10
design variables and two objectives. This test function
is a multi-model function. ZDT 6 was also used by Zit-
zler and Deb [9]. This is an unimodal and has a non-
uniformly distributed objective space. KUR was Kur-
sawa was used [10]. It has a multi-modal function in
one component and pair-wise interactions among the
variables in the other component. Since there are 100
design variables, it needs a high calculation cost to de-
rive the solutions. KP750-2 is the 0/1 knapsack prob-
lem and it is a combinatorial problem [3, 11]. There
are 750 items and two objects. The profit and weight
values are the same as those of the Reference [11].

4.2 Parameters of GAs

In the former studies, some methods used the real
value coding and made good results [12]. In this pa-
per, to discuss the effectiveness of the algorithm, sim-
ple methods are applied for all the problems. There-
fore the bit coding is used in the experiments. Simi-
larly, one point crossover and bit flip are used for the
crossover and mutation. The length of the chromo-
some is 20 bit per one design variable for the continu-
ous problems and 750 bit for the knapsack problems.
In the continuous problems, population size is 100 and
the simulation is terminated when the generation is
got over 250. In the knapsack problems, population
size is 250 and the simulation is terminated when the
generation is exceeded 2000.

4.3 Evaluation methods

To compare the results derived by each algorithm, the
following evaluation methods are used in this paper.

4.3.1 Ratio of Non-dominated Individuals
(RNI)

This performance measure is derived from comparing
two solutions, which are derived by two methods. RNI
is derived from the following steps. At first, two pop-
ulations from different methods are mixed. Secondly,
the solutions that are non-dominated are chosen. Fi-
nally, RNI of each method is determined as the ratio
of the number of the solutions who are in chosen solu-
tions and derived by the method and the total number
of the solutions. By RNI, the accuracy of the solutions
can be compared. Figure 1 shows an example of RNI.
In this example, the results of method A and B are
compared. This case figured out method B is superior
to method A.



Method A

Method Ba % b %

50 %
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Figure 2: An example of MMA

4.3.2 Maximum, Minimum and Average
values of each object of derived
solutions (MMA)

To evaluate the derived solutions, not only the accu-
racy but also the expanse of the solutions is important.
To discuss the expanse of the solutions, the maximum,
minimum and average values of each object are con-
sidered. Figure 2 is an example of this measurement.
In this figure, the maximum and minimum values of
objective function are illustrated. At the same time,
the medium value is pointed as a circle.

4.4 Results

Proposed NCGA, SPEA2, NSGA-II and NO-NC-
NCGA ( NCGA with no neighborhood crossover) are
applied to test functions. 30 trials have been per-
formed. The results are explained in the following
sections. All the results are the average of 30 trials.

4.4.1 ZDT4

The results of RNI and MMA of ZDT4 are shown in
Figure 3 and 4 respectively. Figure 5 indicates Pareto
solutions in ZDT4. In this figure, all the Pareto-
optimum solutions that are derived in 30 trials are
figured out.

From figure 4, it is found that NCGA made the good
results. SPEA2 is derived the wider solutions than the
other methods. In the comparison of RNI, NSGA-II
and NCGA are better than other methods and NCGA
is slightly better than NSGA-II.
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Figure 3: Max-Min values of ZDT4
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4.4.2 KUR

In this problem, there are 100 design variables. There-
fore, a lot of generations should be needed to derive the
solutions. The results of RNI and MMA are shown in
figure 6 and 7. Figure 8 indicates Pareto solutions in
KUR. In this figure, all the Pareto-optimum solutions
that are derived in 30 trials are figured out.

It is clear from the figure 7 that NCGA derived bet-
ter solutions than the other methods. The solutions of
NCGA are also wider spread than those of the other
methods. In this problem, the mechanism of neighbor-
hood crossover acts effectively to derive the solutions.
That is to say the neighborhood crossover is an oper-
ation to find the solutions that have the diversity and
high accuracy.
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Figure 9: Max-Min values of KP750-2
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SPEA2

NSGA-II

NCGA

51% 49%

25% 75%

64% 36%

21% 79%

66% 34% 97% 3%

nNCGA

SPEA2

NSGA-II

NCGA

nNCGA

Figure 10: RNI of KP750-2



24000

25000

26000

27000

28000

29000

30000

26000 28000 30000

24000

25000

26000

27000

28000

29000

30000

26000 28000 30000
f1(x)

f 
2

(x
)

24000

25000

26000

27000

28000

29000

30000

26000 28000 30000
f1(x)

f 
2

(x
)

f1(x)

f 
2

(x
)

f1(x)

f 
2

(x
)

24000

25000

26000

27000

28000

29000

30000

26000 28000 30000

SPEA2

nNCGA

NSGA-II

NCGA

Figure 11: Pareto optimum individuals(KP750-2)

4.4.3 KP750-2

KP750-2 is the knapsack problem and it is very diffi-
cult to search the real Pareto-optimum solutions. The
results of RNI and MMA are shown in figure 9 and 10.
Figure 11 indicates Pareto solutions in KP750-2. In
this figure, all the Pareto-optimum solutions that are
derived in 30 trials are figured out.

From figure 9, NCGA found the wide spread solutions
compared to the other methods. According to figure
10, the accuracy of the solutions of NCGA is better
than those of the other methods. It is also concluded
that the neighborhood crossover affects the good re-
sults in this problem.

5 Conclusion

In this paper, a new algorithm for multi-objective
problems is proposed. The proposed algorithm is
called ”Neighborhood Cultivation Genetic Algorithm
(NCGA)”. NCGA has not only important mechanism
of the other methods but also the mechanism of neigh-
borhood crossover selection.

To discuss the effectiveness of the proposed method,
NCGA was applied to test functions and results were
compared to the other methods; those are SPEA2,
NSGA-II and nNCGA ( NCGA with no neighborhood

crossover). Through the numerical examples, the fol-
lowing topics are made clear.

1) In almost all the test functions, NCGA derived the
good results. Compared to the other method, the
results are superior to the others. From this result,
it can be noted that the proposed NCGA is good
method in multi-objective optimization problems.

2) Comparing to NCGA using neighborhood crossover
and NCGA using random crossover, the former is
obviously superior to the latter in all problems.
Therefore, the results emphasize that the neighbor-
hood crossover acts to derive the good solutions.

3) Comparing to SPEA2 and NSGA-II, two methods
have almost the same ability to find Pareto opti-
mum solutions.
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